

CONTENTS

Corporate Profile Product Information Product Advantages Typical Applications Product Specifications Installation Instructions Testing Procedure Design Guide Approval Project References

Corporate Profile

Illinois Tool Works, Inc. (NYSE: ITW) is a diversified manufacturing company with 100 years of history delivering specialized expertise, innovative thinking and value-added products to meet critical customer needs in a va-

riety of industries. ITW has 875 decentralized business units in 54 countries.

There are 7 main divisions:

- *Industrial Packaging*. Steel, plastic and paper products used for bundling, shipping and protecting goods in transit.
- Power Systems & Electronics. Equipment and consumables associated with specialty power conversion, metallurgy and electronics.
- *Transportation*. Transportation-related components, fasteners, fluids and polymers, as well as truck remanufacturing and related parts and service.
- Food Equipment. Commercial food equipment and related service.
- **Polymers & Fluids**. Adhesives, sealants, lubrication and cutting fluids, and hygiene products.
- Construction Products. Tools, fasteners and other products for construction applications.
- All Other. All other operating segments.

ITW employs approximately 65,000 women and men. These talented individuals, many of whom have specialized engineering or scientific expertise, contribute to our global leadership in patents. Our current number of patents and patent applications exceeds 21,000.

The Construction Products division established its base in Asia in 1973 by opening, in Singapore, a wholly owned subsidiary of ITW known today as ITW Construction Products (Singapore).

With the objective of providing customers' satisfaction, ITW expanded its presence in Asia by opening local entities in various markets such as Hong Kong, Mainland China (1998), Thailand (2008), Indonesia (2011) and Vietnam (2012). Today, ITW Construction Products (Singapore) also sells through selected distributors in Malaysia and the Philippines.

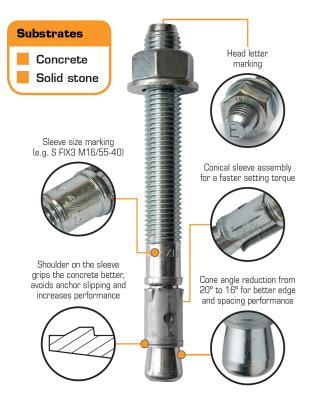
The product offer in Asia mainly includes:

- Fastening Systems (RAMSET™)
- Metal Self-drilling Screws (Buildex[®] and Boustead)
- Lifting Systems (Reid)

With a local presence, ITW Construction Products in Asia offers various services such as product availability ex-stock, assistance on jobsites, special products development and anchors load calculation.

T Construction Products (Singapore)

4 Changi South Lane, #06-01 Nan Wah Building, Singapore 486127 Tel: +65 6746 1177 Fax: +65 6746 1482 www.itwcpsea.com


PRODUCT INFORMATION

RAMSET FIX3 Stud Anchor

Fast and convenient the New FIX3 stud anchor is suitable for a broad range of applications in the compression zone of concrete, either pre-fastened or through fixed. This innovative new product has high load capacity, limited only to the concrete cone failure, plus excellent edge and spacing limitations.

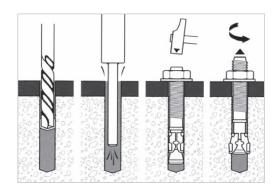
Product Advantages

- Versatile anchor for columns, beams, brackets and plates in concrete.
- Offers one of the **highest loads** of any ETA Option 7 approved anchor.
- **30% higher performance** limited only by the type of concrete used.
- **Matheburger Meduced edge and spacing distance.**
- Clear sleeve and head marking offering pre-installation and post-installation guidance.

Typical Applications

- Curtain wall
- Guide rails / railings / machinery
- Industrial doors and gates
- Brickwork support angles
- Storage systems / pallet racking
- Stadium seating / fencing posts
- Steel and timber framework

PRODUCT INFORMATION

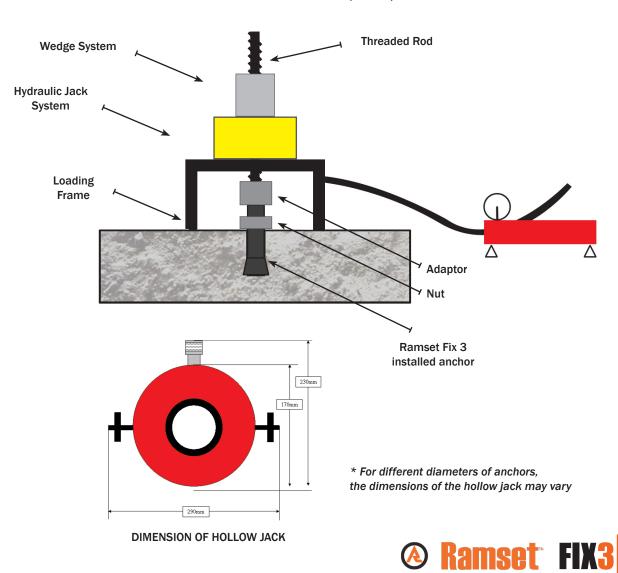

Product Specifications

Material Bolt	Carbon Steel
Head Style	Hex Nut
Fixing Method	Through Fixture
Setting Method	Torque-Controlled
Anchoring Method	Expansion
Substrates	Concrete (non-cracked)

Description	Part No.	Qty/Bx	Description	Description Part No.
FIX3 M6x 45/ 5	7C-FIX3-645V	100		
FIX3 M6x 55/20-10	7C-FIX3-655V	100	FIX3 M12x 80/ 5	FIX3 M12x 80/ 5 7C-FIX3-1280
FIX3 M6x 85/50-40	7C-FIX3-685V	100	FIX3 M12x100/25-10	FIX3 M12x100/25-10 7C-FIX3-1210-0V
FIX3 M8x 55/ 5	7C-FIX3-855V	100	FIX3 M12x115/ 40-25	FIX3 M12x115/ 40-25 7C-FIX3-1211-5V
FIX3 M8x 70/20-10	7C-FIX3-870V	100	FIX3 M12x125/ 50-35	FIX3 M12x125/ 50-35 7C-FIX3-1212-5V
FIX3 M8x 90/40-30	7C-FIX3-890V	50	FIX3 M12x140/ 65-50	FIX3 M12x140/65-50 7C-FIX3-1214-0V
FIX3 M8x100/50-40	7C-FIX3-8100	50	FIX3 M12x160/ 85-70	FIX3 M12x160/85-70 7C-FIX3-1216-0V
FIX3 M8x115/65-55	7C-FIX3-8115	50	FIX3 M12x180/105-90	FIX3 M12x180/105-90 7C-FIX3-1218-0V
FIX3 M8x130/80-70	7C-FIX3-8130	50	FIX3 M12x220/145-130	FIX3 M12x220/145-130 7C-FIX3-1222-0V
FIX3 M8x160/110-90	7C-FIX3-8160	50		
FIX3 M10x 65/5	7C-FIX3-1065	50	FIX3 M16x100/ 5	FIX3 M16x100/ 5 7C-FIX3-1610-0V
FIX3 M10x 75/ 15	7C-FIX3-1075	50	FIX3 M16x125/ 30-15	FIX3 M16x125/ 30-15 7C-FIX3-1612-5V
FIX3 M10x 85/ 25- 15	7C-FIX3-1085	50	FIX3 M16x150/ 55-40	FIX3 M16x150/ 55-40 7C-FIX3-1615-0V
FIX3 M10x 95/ 36- 26	7C-FIX3-1095	50	FIX3 M16x170/ 75-60	FIX3 M16x170/ 75-60 7C-FIX3-1617-0V
FIX3 M10x110/ 50- 40	7C-FIX3-1011-0V	25	FIX3 M16x185/90-75	FIX3 M16x185/90-75 7C-FIX3-1618-5V
FIX3 M10x125/ 65- 55	7C-FIX3-1012-5V	25	FIX3 M20x125/ 10	FIX3 M20x125/10 7C-FIX3-2012-5V
FIX3 M10x140/ 80- 70	7C-FIX3-1014-0V	25	FIX3 M20x165/50-25	FIX3 M20x165/50-25 7C-FIX3-2016-5V
FIX3 M10x160/100- 90	7C-FIX3-1016-0V	25	FIX3 M20x220/105-80	FIX3 M20x220/105-80 7C-FIX3-2022-0V

Installation Instructions

- 1. Drill the correct diameter hole to the same diameter as the Fix3 stud anchor selected.
- 2. Remove debris from hole by blowing out with compressed air or hand held blow out pump.
- 3. Install the anchor in the hole with a hammer until washer seats on fixture.
- 4. Tighten bolt with a torque wrench to recommended assembly torque.



TESTING PROCEDURE

METHOD STATEMENT FOR NON-DESTRUCTIVE TENSILE TEST ON RAMSET FIX 3

- **1**. Prior to carrying out the test, the test equipment (Hydraulic Jack System with calibration certification attached) must be setup in position according to BS5080 Part **1**.
- 2. The loading frame is placed through the anchor and sits directly on the base concrete. The appropriate type of hydraulic jack is mounted on top of the loading frame and wedged in place with a corresponding wedge system to engage the anchor tightly at the end of the setup before applying the load.
- 3. A central load is applied gradually by means of the hydraulic jack system, via a hollow piston cylinder onto the wedges to create a reaction force equaling to a tensile pull-out effect, up to the required design test load.
- 4. The load achieved is indicated in the calibrated pressure gauge, usually expressed in KiloNewtons (kN) for ease of load determination. During or at the end of the loading, the achieved load and the mode of failure, if any, are recorded in the field test record form. The recorded field test record form shall be acknowledged by all parties present, namely the tester, the contractor and the consultant and shall form part of the final test report to be submitted to the contractor for filing purpose.

TEST SETUP (N.T.S.)

DESIGN GUIDE FIX 3 Stud Anchors - Galvanized Steel

Minimum anchor depth

Min. Depth Max thick Drilling Min thick

t_{fix}

5

20

50

5

Depth of base

(mm)

 h_1 h_{min}

41 100

Min. Depth Max thick anchor before of part to

depth (mm) expans (mm) be fixed (mm)

efmir

25,6 35

M6x45/5*

M6x55/15*

M6x85/45*

M8x55/5

M6x64 percée

Torque controlled expansion anchor, made of

zinc coated steel for use in non cracked concrete

material (mm)

Maximum anchor depth

Max. Depth Max thick Drilling

be fixed

(mm)

10

40

before of part to

anchor

depth (mm) expans (mm)

h_{ef.ma} h_{nom} $\mathsf{t}_{\mathsf{fix}}$

35 45 Min thick Ø

material

h_{min}

100

Depth of base

(mm)

 h_1

51

thread

(mm) (mm)

d d_{O} df

б б 8

Ø drill Ø clear-

bit ance

(mm) (mm) (mm)

Total Max.

anchor

length

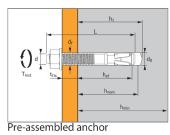
L T_{inst}

45

55

85

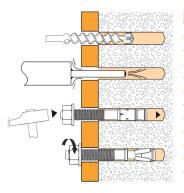
64


55

tighten

torque (Nm)

10



	M8x70/20-10	С			20					10						70		
	M8x90/40-30	Ε			40					30						90		
	M8x100/50-40	F	30	38	50	50	100	40	48	40	60	100	8	8	9	110	15	
	M8x115/65-55	G			65					55						115		
	M8x130/80-70	н			80					70						130		
	M8x160/110-100	J			110					100						160		
	M10x65/5	•			5					-						65		
APPLICATION	M10x75/15-5	С			15					5						75		
	M10x85/25-15	D			25					15						85		
Steel and timber framework	M10x95/36-26	Ε			36					26						95		
and beams	M10x110/50-40	F	40	50	50	60	100	50	60	40	70	100	10	10	12	110	30	
Lift guide rails	M10x125/65-55	G			65					55						125		
	M10x140/80-70	T			80					70						140		
Industrial doors and gates	M10x160/100-90	J			100					90						160		
Brickwork support angles	M12x80/5	-			5					-						80		
- Storpgo systems	M12x100/25-10	F			25					10						100		
Storage systems	M12x115/40-25	G			40					25						115		
	M12x125/50-35	н			50					35						125		
	M12x140/65-50	T	50	62	65	75	100	65	77	50	90	130	12	12	14	140	50	
	M12x160/85-70	J			85					70						160		
	M12x180/105-90	L			105					90						180		
MATERIAL	M12x220/145-130	0			145					130						220		
VIATERIAL	M12x290/215-200*	-			215					200						290		
	M16x100/5	•			5					-						100		
Bolt M8-M20: Cold formed	M16x125/30-15	G			30					15						125		
NFA 35-053 / Zinc electroplates	M16x150/55-40	T			55					40						150		
(5 μm)	M16x170/75-60	К	65	80	75	95	130	80	95	60	110	160	16	16	18	170	100	
Sleeve: Cold formed,	M16x185/90-75	L			90					75						185		
,	M16x235/140-125*	-			140					125						235		
NFA 35-231	M16x300/200*	-			200					178						300		
					10											125		
Washer: NF E25 513	M20x125/10				10													
	M20x125/10 M20x165/50-25	- J	75	93	50	110	150	100	118	25	135	200	20	20	22	165	160	

MATERIAL

- Bolt M8-M20: Cold formed NFA 35-053 / Zinc electro (5 µm)
- Sleeve: Cold formed, NFA 35-231
- Washer: NF E25 513
- Hexagonal nut: Steel strength grade 6 or 8, ISO 898-2

INSTALLATION

* do not belongs to ETA	

		M6	M8	M10	M12	M16	M20
Cross-section	above cone						
f _{uk} (N/mm ²)	Min. tensile strength	700	750	750	750	700	600
f _{yk} (N/mm ²)	Yield strength	580	600	600	600	570	570
As (mm ²)	Stressed cross-section	-	23,8	34,7	56,1	103,9	172
Threaded par	rt						
f _{uk} (N/mm ²)	Min. tensile strength	600	650	650	650	600	580
f _{yk} (N/mm ²)	Yield strength	480	520	520	520	480	480
As (mm ²)	Stressed cross-section	20,1	36,6	58	84,3	157	245
W _{el} (mm ³)	Elastic section modulus	12,71	31,23	62,3	109,17	277,47	540,9
M ⁰ _{Rk,s} (Nm)	Characteristic bending moment	9	24	49	85	200	376
M (Nm)	Recommended bending moment	3,7	9,8	20,0	34,7	81,6	153,5

DESIGN GUIDE

FIX 3 Stud Anchors - Galvanized Steel

The loads specified on this page allow judging the product's performances, but cannot be used for the designing. The data given in the pages "CC method" have to be applied.

Mean Ultimate loads are derived from test results in admissible service conditions, and characteristic loads are statistically determined.

TENSILE						
Anchor size	M6	M8	M10	M12	M16	M20
Minimum anchorage	depth					
h _{ef}	25	30	40	50	65	75
N _{Ru,m}	0,6	10,3	15,5	23,3	39,0	40,6
N _{Rk}	4,5	7,8	11,0	19,2	31,4	33,7
Maximum anchorage	e depth					
h _{ef}	35	40	50	65	80	100
N _{Ru,m}	9,4	15,6	22,0	33,8	47,1	69,0
N _{Rk}	7,0	14,0	18,0	28,3	42,0	56,1

SHEAR

Anchor size	M6	M8	M10	M12	M16	M20
V _{Ru,m}	6,8	14,3	22,6	32,8	56,5	85,2
V _{Rk}	2,9	9,9	13,7	29,4	36,5	62,2

$$N_{Rd} = \frac{N_{Rk}^{*}}{\gamma_{Mc}}$$

*Derived from test results

TENSILE

Anchor size	M6	M8	M10	M12	M16	M20
Minimum anchorage	depth					
h _{ef}	25	30	40	50	65	75
N _{Rd}	2,5	5,2	7,3	12,8	20,9	22,5
Maximum anchorage	e depth					
h _{ef}	35	40	50	65	80	100
N _{Rd}	3,8	9,3	12,0	18,9	28,0	37,4
$v_{Mc} = 1.5$						

$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$

SHEAR

Anchor size	M6	M8	M10	M12	M16	M20
V _{Rd}	2,3	7,9	11,0	23,5	29,2	41,5
$\gamma_{Ms} = 1,25$ (M6-M16)						
$\gamma_{Ms} = 1,5$ (M20)						

YΜc 1,5

$$N_{Rec} = \frac{N_{Rk}^{*}}{\gamma_{M.}\gamma_{F}}$$

*Derived from test results

TENSILE

Anchor size	M6	M8	M10	M12	M16	M20				
Minimum anchorage depth										
h _{ef}	25	30	40	50	65	75				
N _{Rec}	1,7	3,7	5,2	9,1	15,0	16,0				
Maximum anchorag	Maximum anchorage depth									
h _{ef}	35	40	50	65	80	100				
N _{Rec}	2,7	6,7	8,6	13,5	20,0	26,7				

 $\gamma_F = 1,4$; $\gamma_{Mc} = 1,5$

$$V_{Rec} = \frac{V_{Rk} *}{\gamma_M \gamma_F}$$

SHEAR

Anchor size	M6	M8	M10	M12	M16	M20
V _{Rec}	1,7	5,7	7,8	16,8	20,9	29,6
$v_{Mc} = 1.25$						

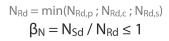
DESIGN GUIDE

FIX 3 Stud Anchors - Galvanized Steel

TENSILE in kN

- Pull-out resistance $\mathbf{N}_{\mathrm{Rd},p} = \mathbf{N}_{\mathrm{Rd},p}^{O}.\mathbf{f}_{b}$

	M10	M12	M16	stance M20
30	40	50	65	75
5,0	-	-	-	-
40	50	65	80	100
-	-	-	-	-
	5,0	5,0 -	5,0	5,0


 $\gamma_{Mc} = 1,5$

Concrete cone resistance $\mathbf{N}_{\mathrm{Rd,c}} = \mathbf{N}_{Rd,c}^{O} \cdot \mathbf{f}_{b} \cdot \boldsymbol{\Psi}_{s} \cdot \boldsymbol{\Psi}_{c,N}$

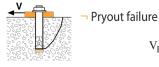
$$\begin{tabular}{|c|c|c|c|c|c|} \hline $N^0_{Rd,c}$ & Design cone resistance \\ \hline $Anchor size$ & $M8$ & $M10$ & $M12$ & $M16$ & $M20$ \\ \hline $Minimum anchorage depth$ & $$hefty is $$h$$

- Steel resistance

N _{Rd,s}	Steel design tensile resistance								
Anchor size	M8	M10	M12	M16	M20				
N _{Rd,s}	11,9	17,3	28,1	48,5	73,7				
$\gamma_{Ms} = 1,5 (M8-M16)$									
$\gamma_{Ms}=1,4~(M20)$									

f _B INFLUENCE	OF CONCRI	ETE	
Concrete class	f _B	Concrete class	f _B
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

SHEAR in kN

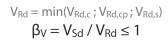


- Concrete edge resistance

$$\mathbf{V}_{\mathrm{Rd,c}} = \mathbf{V}_{Rd,c}^{O} \cdot \mathbf{f}_{b} \cdot \mathbf{f}_{\beta,V} \cdot \Psi_{S-C,V}$$

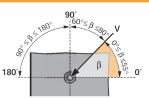
V ^o _{Rd,c}	M8	Design c at minim M10		5	
	1110	MITU	IVITZ	MITO	11/20
Minimum anchorage depth					
h _{ef}	30	40	50	65	75
C _{min}	50	65	100	100	115
S _{min}	40	50	100	100	100
V ⁰ _{Rd,c} (C20/25)	2,7	4,6	9,7	11,1	15,1
Maximum anchorage depth					
h _{ef}	40	50	65	80	100
C _{min}	55	65	70	105	120
S _{min}	45	60	70	90	100
V ⁰ _{Rd,c} (C20/25)	3,3	4,8	6,0	12,5	17,0

 $\gamma_{Mc}=1,5$


$$V_{\text{Rd,cp}} = V_{Rd,cp}^0 \cdot f_b \cdot \Psi_s \cdot \Psi_{c,N}$$

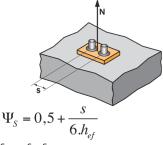
V ⁰ _{Rd,cp} Anchor size	M8	С М10	Design pr M12	yout res M16	istance M20
Minimum anchorage depth					
h _{ef}	30	40	50	65	75
V ⁰ _{Rd,cp} (C20/25)	5,5	8,5	11,9	35,2	43,6
Maximum anchorage depth					
h _{ef}	40	50	65	80	100
V ⁰ _{Rd,cp} (C20/25)	8,5	11,9	35,2	48,0	67,2
$\gamma_{Mcp} = 1,5$					

Steel resistance


V _{Rd,s}		Stee	design s	shear res	istance
Anchor size	M8	M10	M12	M16	M20
V _{Rd,s}	8,0	11,0	21,9	29,2	47,4
γ _{Ms} = 1,25 (M8-M16)					
$\gamma_{Ms} = 1,5 (M20)$					

$\beta_{\rm N} + \beta_{\rm V} \le 1,2$

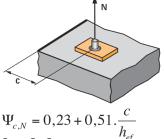
f_{β,V} INFLUENCE OF SHEAR LOADING DIRECTION


Angle β [°]	f _{β,V}
0 to 55	1
60	1,1
70	1,2
80	1,5
90 to 180	2

DESIGN GUIDE FIX 3 Stud Anchors - Galvanized Steel

CC- Method (values issued from ETA)

 $|\Psi_s|$ NFLUENCE OF SPACING FOR CONCRETE CONE RESISTANCE IN TENSILE LOAD



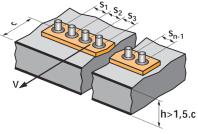
 $\begin{array}{l} S_{min} < S < S_{cr,N} \\ S_{cr,N} = 3.h_{ef} \\ \Psi_S \, must \, be \, used \, for \, each \, spacing \\ influenced \, the \, anchors \, group. \end{array}$

SPACIN	NG 5	Min	imum ar	uction fa Ichorage	5
	M8	M10	M12	M16	M20
40	0,72				
50	0,78	0,71			
65	0,86	0,77			
90	1,00	0,88			
100		0,92	0,83	0,76	0,72
120		1,00	0,90	0,81	0,77
150			1,00	0,88	0,83
180				0,96	0,90
195				1,00	0,93
225					1,00

SPACIN	IG S	Мах		uction fa nchorage	5
	M8	M10	M12	M16	M20
45	0,69				
60	0,75	0,70			
70	0,79	0,73	0,68		
90	0,88	0,80	0,73	0,69	
100	0,92	0,83	0,76	0,71	0,67
120	1,00	0,90	0,81	0,75	0,70
150		1,00	0,88	0,81	0,75
195			1,00	0,91	0,83
220				0,96	0,87
240				1,00	0,90
300					1,00

$\Psi_{\mathsf{c},\mathsf{N}}$ INFLUENCE OF EDGE FOR CONCRETE CONE RESISTANCE IN TENSILE LOAD

 $\begin{array}{l} C_{min} < C < C_{cr,N} \\ C_{cr,N} = 1,5.h_{ef} \\ \Psi_{c,N} \mbox{ must be used for each distance influenced the anchors group.} \end{array}$


65 1,00 100 1,00 100 1,00	EDGE C		Reduction fac Minimum anchorage						
65 1,00 100 1,00 100 1,00		M8	M10	M12	M16	M20			
100 1,00 100 1,00	50	1,00							
100 1,00	65		1,00						
	100			1,00					
115 1.00	100				1,00				
1,00	115					1,00			

EDGE C		Max	Reductimum ar	ction fact hchorage	
	M8	M10	M12	M16	M20
55	0,93				
60	1,00				
65		0,89			
70		0,94	0,78		
75		1,00	0,82		
100			1,00		
105				0,90	
110				0,93	
120				1,00	0,84
130					0,89
150					1,00

$\Psi_{s-c,V}$ influence of spacing and edge distance for concrete edge resistance in shear load

$\Psi_{s-c,V} = \frac{c}{c_{\min}} \cdot \sqrt{\frac{c}{c_{\min}}}$
$\Psi_{s-c,V} = \frac{3.c+s}{c} \cdot \sqrt{\frac{c}{c}}$

$$\Psi_{s-c,V} = \frac{3.c+s}{6.c_{\min}} \cdot \sqrt{\frac{c}{c_{\min}}}$$

¬ For si	ngle an	chor fa	stening	J						Non-cra	Facto acked co	r Ψ _{s-c,V} ncrete
$\frac{C}{C_{min}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
Ψ_{s-cV}	1,00	1,31	1,66	2.02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

	- For 2 anchors fastening										Non-cra	Factor Ψ _{s-c,V} n-cracked concrete		
.c	S Cmin	1 ,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2	
	1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16	
	1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31	
	2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46	
	2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61	
	3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76	
	3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91	
	4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05	
	4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20	
	5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35	
	5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65	
	6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65	

For 3 anchors fastening and more

h

$$\Psi_{s-c,V} = \frac{3.c + s_1 + s_2 + s_3 + \dots + s_{n-1}}{3.n.c_{\min}} \cdot \sqrt{\frac{c}{c_{\min}}}$$

APPROVALS

Centre Scientifique et

Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2 Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

☆ なな Autorisé et

Autorise et al.

[™] Niché conformément à traticle 10 de la directive 89/106/EEC du Conseil, du 21 décembre 1988, relative au rapprochement des dispositions x legislatives, réglementaires et administratives des Etats membres concernant les produits de construction.

[™] x

☆ ☆

MEMBRE DE L'EOTA

European Technical Approval

ETA-13/0005

(English language translation, the original version is in French language)

Nom commercial : Trade name:	SPIT FIX3							
Titulaire : Holder of approval:	Société Spit Route de Lyon F-26501 BOURG-LES-VALENCE France							
Type générique et utilisation prévue du produit de construction :	Cheville métallique à expansion par vissage à couple contrôlé, de fixation dans le béton non fissuré: diamètres M8, M10, M12 M16 et M20.							
Generic type and use of construction product:	Torque-controlled expansion anchor for use in non cracked concrete: sizes M8, M10, M12 M16 et M20							
Validité du : au : Validity from / to:	01/05/2013 30/04/2018							
Usine de fabrication : Manufacturing plant:	Société Spit Route de Lyon F-26501 BOURG-LES-VALENCE France							
Le présent Agrément technique européen contient :	15 pages incluant 8 annexes faisant partie intégrante du document.							
This European Technical Approval contains:	15 pages including 8 annexes which form an integral part of the document.							

Organisation pour l'Agrément Technique Européen

PROJECT REFERENCE

VIETNAM

COCA COLA FACTORY

